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Quasi-stationary distribution (QSD)

Consider a Markov process (Xt)t≥0 taking values in E (= N or = R+). Assume

that Xt = 0 for t ≥ T0, where T0 = inf{t ≥ 0 : Xt = 0} is the extinction time.

Definition
We call a probability measure µ a quasi-stationary distribution if for all t ≥ 0,

µ(·) = Pµ(Xt ∈ ·|T0 > t).

If µ is a QSD, then for some initial distribution α,

lim
t→∞

Pα(Xt ∈ ·|T0 > t) = µ.

Question: existence and uniqueness of QSD; domain of attraction; exponen-

tial convergence.
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Consider a Markov chain (Xn)n≥0 on {0, 1, 2, 3} with transition matrix P :

Let Q be the restriction of P on {1, 2, 3}. Consider the eigenequation

µQ = αµ,

where α ∈ (0, 1) is the largest eigenvalue.

There is a unique positive eigenvector µ solves the equation.

The associated eigenvectors of any other eigenvalue cannot be positive.

Summing up both sides, we see Pµ(T0 > 1) = α.

Dividing both sides of eigenequation by α and applying Markov property:

Pµ(Xn ∈ ·|T0 > n) = µ(·) and αn = Pµ(T0 > n).
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QSDs for branching process

Yaglom (1947) first studied the QSDs for Galton-waston branching process:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

where (ξn,i) are i.i.d. random variables in {0, 1, 2, . . . }. Let ρ = E(ξn,i).

If ρ ≥ 1, then there is no QSD.

If ρ < 1, then there are infinitely many QSDs.

� Any α ∈ [ρ, 1) is a eigenvalue corresponding to a eigenvector µα, which

is a QSD after normalisation.

� Eigenvalue ρ corresponds to Yaglom’s limit (1947): For any x > 0,

lim
t→∞

Px(Xn ∈ ·|T0 > n) = µρ(·).

Pei-Sen Li (BIT) QSD for CB-process with competition August 2, 2023 5 / 17



QSDs for branching process

Yaglom (1947) first studied the QSDs for Galton-waston branching process:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

where (ξn,i) are i.i.d. random variables in {0, 1, 2, . . . }. Let ρ = E(ξn,i).

If ρ ≥ 1, then there is no QSD.

If ρ < 1, then there are infinitely many QSDs.

� Any α ∈ [ρ, 1) is a eigenvalue corresponding to a eigenvector µα, which

is a QSD after normalisation.

� Eigenvalue ρ corresponds to Yaglom’s limit (1947): For any x > 0,

lim
t→∞

Px(Xn ∈ ·|T0 > n) = µρ(·).

Pei-Sen Li (BIT) QSD for CB-process with competition August 2, 2023 5 / 17



QSDs for branching process

Yaglom (1947) first studied the QSDs for Galton-waston branching process:

Xn =

Xn−1∑
i=1

ξn,i, n ≥ 1.

where (ξn,i) are i.i.d. random variables in {0, 1, 2, . . . }. Let ρ = E(ξn,i).

If ρ ≥ 1, then there is no QSD.

If ρ < 1, then there are infinitely many QSDs.

� Any α ∈ [ρ, 1) is a eigenvalue corresponding to a eigenvector µα, which

is a QSD after normalisation.

� Eigenvalue ρ corresponds to Yaglom’s limit (1947): For any x > 0,

lim
t→∞

Px(Xn ∈ ·|T0 > n) = µρ(·).

Pei-Sen Li (BIT) QSD for CB-process with competition August 2, 2023 5 / 17



Continuous-state branching processes

Consider a sequence of Galton–Watson branching processes

{X(k)
n : n ≥ 0}, k = 1, 2, . . . .

A continuous-state branching process (CB-process) arises as the scaling limit

Xt = lim
k→∞

1

k
X

(k)
bktc.

The transition semigroup (Qt)t≥0 of (Xt) is defined by∫
R+

e−λyQt(x, dy) = e−xvt(λ),
∂

∂t
vt(λ) = −Ψ(vt(λ)),

where the branching mechanism Ψ is given by

Ψ(λ) = bλ+ cλ2 +

∫ ∞
0

(
e−λz − 1 + λz1{z≤1}

)
m(dz), λ ≥ 0.
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A CB-process with branching mechnism Ψ(λ) = bλ + cλ2 is called Feller

branching diffusion, which solves the SDE

Yt = Y0 −
∫ t

0

bYs−ds+

∫ t

0

√
2cYs−dBs,

where (Bs)s≥0 is a Brownian motion.

A CB-process with general branching mechanism Ψ can be constructed as

the unique solution to the equation with jumps (Dawson–Li, AOP, 2006):

Yt = Y0 −
∫ t

0

bYs−ds+

∫ t

0

√
2cYs−dBs +

∫ t

0

∫ 1

0

∫ Ys−

0

zM̃(ds,dz,du)

+

∫ t

0

∫ ∞
1

∫ Ys−

0

zM(ds,dz,du),

where M(ds,dz,du) is a Poisson random measure with intensity dsm(dz)du

and M̃(ds,dz,du) is the compensated measure.
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Condition I (Grey’s condition)

There exists a constant θ > 0 such that

Ψ(λ) > 0 for λ > θ and

∫ ∞
θ

dλ

Ψ(λ)
<∞.

Let ρ = Ψ ′(0).

Lambert (EJP, 2007):

If ρ ≤ 0 or Condition I is not satisfied, then there is no QSD.

If ρ > 0 and Condition I is satisfied, then there are infinitely many QSDs.

Super processes: Liu-Ren-Song-Sun (SPA, 2021);
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The proofs for CB-process essentially rely on the branching property:

Qt(x, ·) ∗Qt(y, ·) = Qt(x+ y, ·),

which means that different individuals act independently with each other.

“Population growth of harbor seals in Washington State”

As the population grows, the birth rate is decreasing.
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A deterministic model

A logistic growth model can be constructed as the solution to:

Yt = Y0 −
∫ t

0

(bYs + βY 2
s )ds,

where −b > 0 and β > 0. The blue term describes competition between each pair

of individuals.
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Branching processes with competition

Lambert (AAP, 2005) introduced the logistic branching process as the ran-

dom time change of an OU-process.

The process solves the SDE:

Yt = Y0 −
∫ t

0

bYs−ds+

∫ t

0

√
2cYs−dBs −

∫ t

0

βY 2
s ds

+

∫ t

0

∫ 1

0

∫ Ys−

0

zM̃(ds,dz,du) +

∫ t

0

∫ ∞
1

∫ Ys−

0

zM(ds,dz,du).

The process is more natural and realistic. However, many tools fail to apply.
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Berestycki-Fittipaldi-Fontbona (PTRF, 2018) introduced the general competition

model :

Yt = Y0 −
∫ t

0

bYs−ds+

∫ t

0

√
2cYs−dBs −

∫ t

0

g(Ys)ds

+

∫ t

0

∫ 1

0

∫ Ys−

0

zM̃(ds,dz,du) +

∫ t

0

∫ ∞
1

∫ Ys−

0

zM(ds,dz,du),

where the competition mechanism g is a nondecreasing function satisfying g(0) = 0.

When g(x) ≡ 0, it reduces to a CB-process.

When g(x) = βx2 (β > 0), it reduces to the logistic model.

They solved the question on genealogy asked by Lambert.

For more general models (nonliner branching processes):

� Ergodicity: L.-Wang (EJP, 2020), L.-Li-Wang-Zhou (AIHP, 2023+)

� Boundary behaviour: Palau and Pardo (SPA, 2017), L.-Yang-Zhou

(AAP, 2019), Ma-Yang-Zhou (ECP, 2021), Xiong-Ren-Yang-Zhou (S-

PA, 2022), Marguet and Smadi (EJP, 2021).



Diffusive situation

Some progress on the uniqueness of the QSD has been made by Cattiaux et al.

(AOP, 2009) for the diffusion process (a special CB-process with competition):

Yt = Y0 −
∫ t

0

bYs−ds+

∫ t

0

√
2cYs−dBs −

∫ t

0

g(Ys)ds.

Theorem (Cattiaux et al., AOP, 2009)

Suppose that ∫ ∞
1

dx

g(x)
<∞.

Then there is only one QSD, and this distribution attracts all initial distributions.

The diffusion process has a symmetric measure µ. Their proof is based on

the spectral theory of the space L2(µ).

A general CB-process with competition only has positive jumps, so there is

no symmetric measure. The treatment of the process requires new tools.

I Cattiaux, P., Collet, P., Lambert, A., Mart́ınez, S., Méléard, S. and San Mart́ın, J. (2009):

Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab.
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Main result

Condition II∫ ∞
1

dx

g(x)
<∞ and lim sup

x→∞
x

∫ ∞
x+1

1

g(y)

∫ ∞
y−x

m(dz) <∞.

Theorem (L.-Wang-Zhou 2023+)

Suppose that Condition I, II are satisfied. Then there is a unique quasi-stationary

distribution µ. Moreover, there exist λ > 0 such that for any initial distribution

ν on (0,∞) and t > 0,

||Pν(·|T0 > t)− µ(·)||Var ≤ Cνe−λt.

Intuitively speaking, the process has the unique QSD if both fluctuation and

competition are strong enough.
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Main result

Examples:

Condition I is satisfied if c > 0 or m(dz) ≥ 1{0<z≤1}c0z
−1−αdz for some

α ∈ (1, 2) and c0 > 0. (The diffusion term is not vanishing or there are

sufficiently more small jumps.)

Condition II is satisfied if there exist c0 > 0 and β > 1 such that

1{z>1}m(dz) ≤ c0z−1−αdz

and 
lim
x→∞

g(x)

xβ
=∞, α ∈ [1, 2),

lim
x→∞

g(x)

x2−α
=∞, α ∈ (0, 1).

(The number of big jumps is suitably controlled and the competition is

sufficiently strong.)
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Strategy of the proof

The proof is based on recent results of Guillin-Nectoux-Wu (2020+; PTRF, 2023).

We need to verify:

(C1) Strong Feller property: For any t > 0 and f ∈ bB, x 7→ Ptf(x) is

continuous on [0,∞).

(C2) Trajectory Feller property: For any T > 0, x 7→ Px((Yt)t∈[0,T ] ∈ ·) is

continuous in the sense of weak convergence.

(C3) Weak Feller property: The killed transition semigroup is weakly Feller.

(C4) Irreducibility: For all x, t > 0 and open set O ⊂ (0,∞), Pt(x,O) > 0.

(C5): There exist a function W ∈ C2
b [0,∞) such that W (x) ≥ 1 for all x ∈ [0,∞),

two sequences of positive constants rn → ∞ and bn, and an increasing sequence

of compact subsets Kn ⊂ [0,∞) such that

−LW (x) ≥ rnW (x)− bn1Kn
(x), x ∈ [0,∞).
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Thank you for your attention!
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